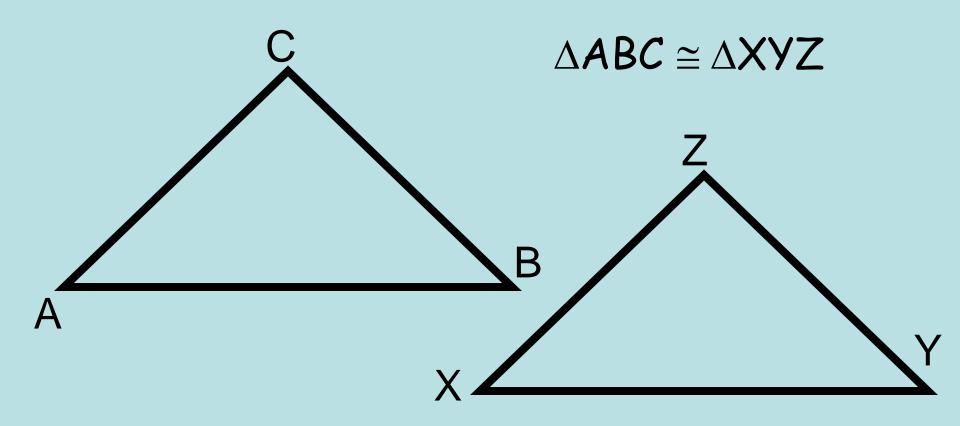


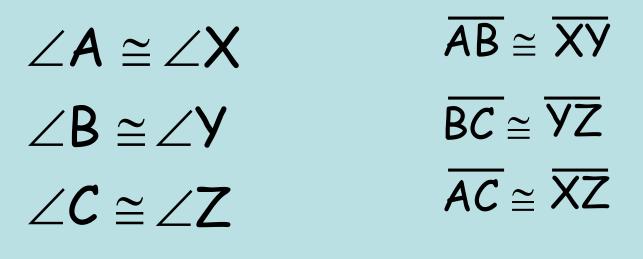
Congruent Figures -Figures that have the same size and shape.

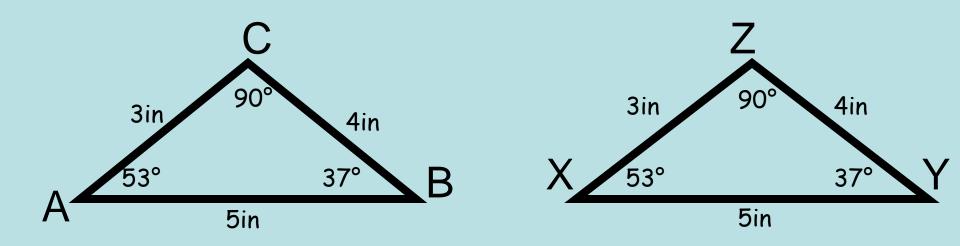
What do you think is true, specifically, about these two congruent triangles.



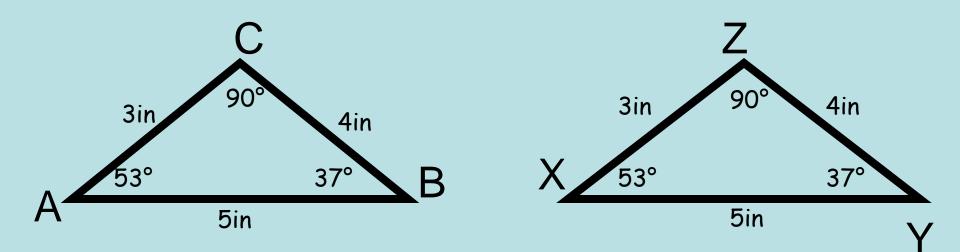
$\Delta \textbf{ABC}\cong \Delta \textbf{XYZ}$

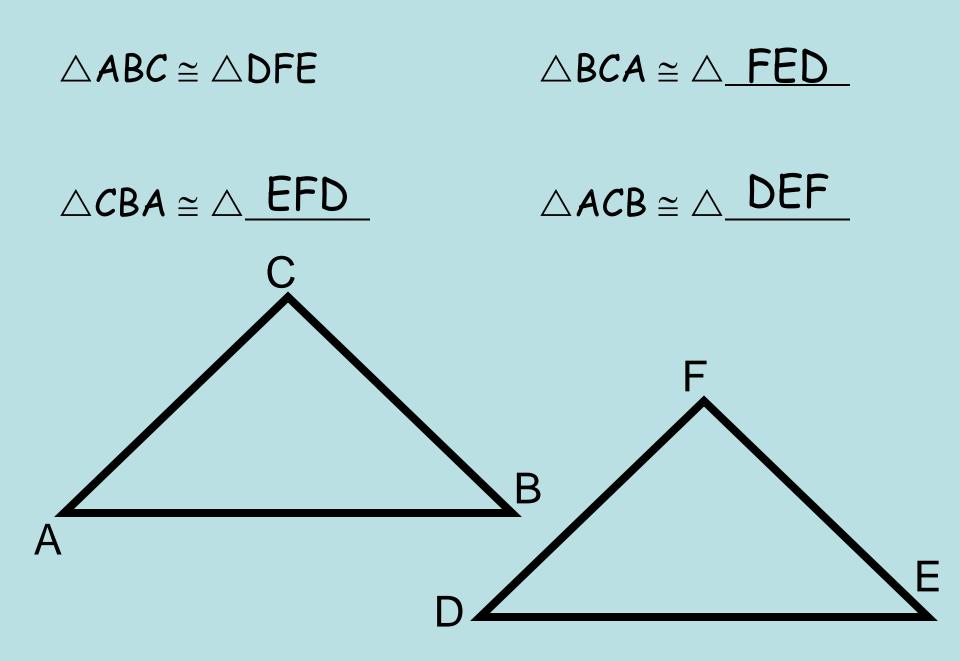
Observations -

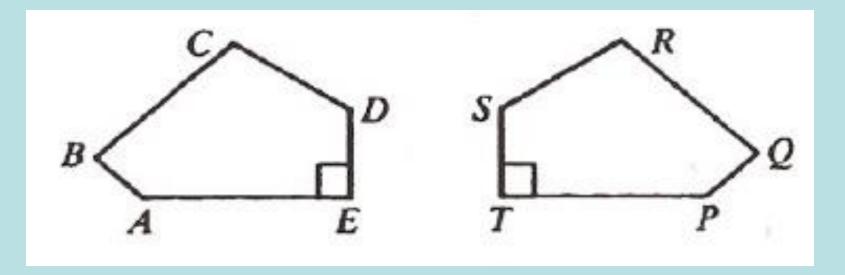




Two polygons are <u>congruent</u> if and only if their vertices can be matched up so that the <u>corresponding parts</u> (angles and sides) of the triangles are congruent.







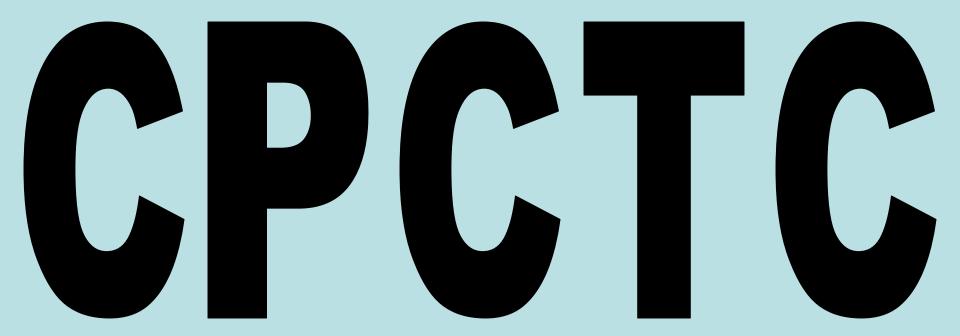
ABCDE \cong PQRSTAEDCB \cong PTSRQBCDEA \cong QRSTPCDEAB \cong RSTPQ

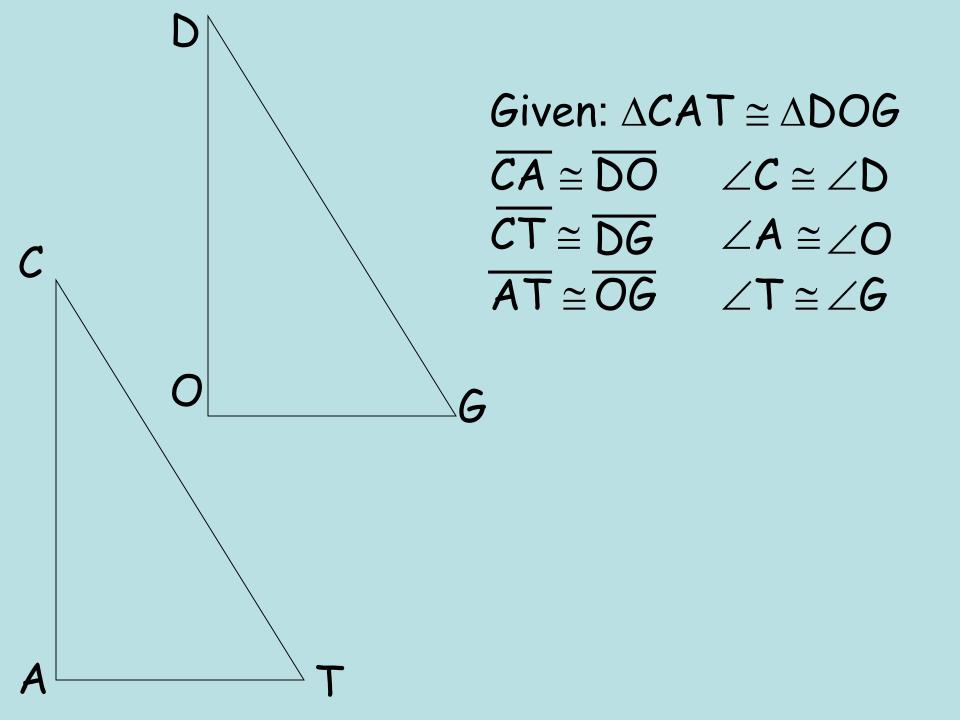
Definition of Congruent Triangles:

Two triangles are congruent if and only if their vertices can be matched up so the <u>corresponding</u> <u>parts</u> of the triangles are congruent.

*When the definition of congruent triangles is used in a proof, the wording used is <u>corresponding parts of congruent</u> <u>triangles are congruent</u> abbreviated as <u>CPCTC</u>.

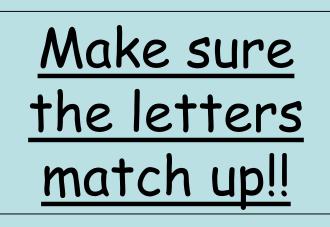
Corresponding Parts of Congruent Triangles are Congruent.





Practice - CPCTC

Given: $\triangle PIG \cong \triangle COW$ $\overrightarrow{PG} \cong \overrightarrow{CW}$ $\angle P \cong \angle C$ $\overrightarrow{PI} \cong \overrightarrow{CO}$ $\angle I \cong \angle O$ $\overrightarrow{IG} \cong \overrightarrow{OW}$ $\angle G \cong \angle W$



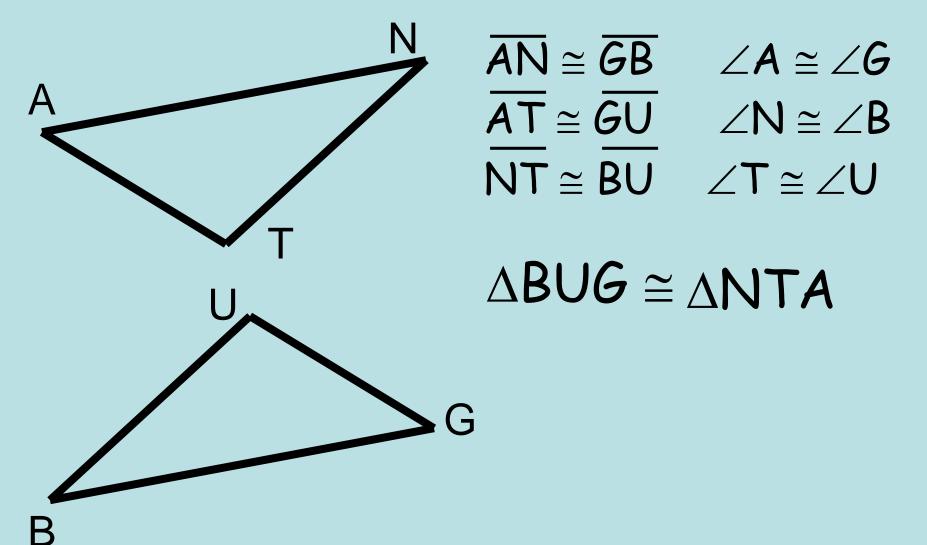
How else could you name the congruent triangles? $\triangle PIG \cong \triangle COW$ $\triangle GIP \cong \triangle WOC$ $\Delta PIG \cong \Delta WQC$ $\triangle IPG \cong \triangle OCW$ ∆GIP ≃ ∆COW $\triangle GPI \cong \triangle WCO$ $\Delta IPG \cong \Delta WCO$ $\triangle PGI \cong \triangle CWO$ $\triangle IGP \cong \triangle OWC$

If \triangle LMN $\cong \triangle$ RST, then the following corresponding parts are congruent.

Angles:
$$\angle L \cong \angle$$

 $\angle M \cong \angle$ ____
 $\angle N \cong \angle$ ____

Sides: LM ≅ _____ MN ≅ _____ LN ≅ _____ **CPCTC:** Since, the definition is an **"if and only if"** statement, it also means that if you know the corresponding parts are congruent, then you can say the triangles are congruent.



Partner Practice

page 119 # 1-10

p. 119 # 1-4 $\Delta FIN \cong \Delta WEB$

1. Name the three pairs of corresponding sides.

 $\overline{\mathsf{FI}} \cong \overline{\mathsf{WE}} \qquad \overline{\mathsf{IN}} \cong \overline{\mathsf{EB}} \qquad \overline{\mathsf{FN}} \cong \overline{\mathsf{WB}}$

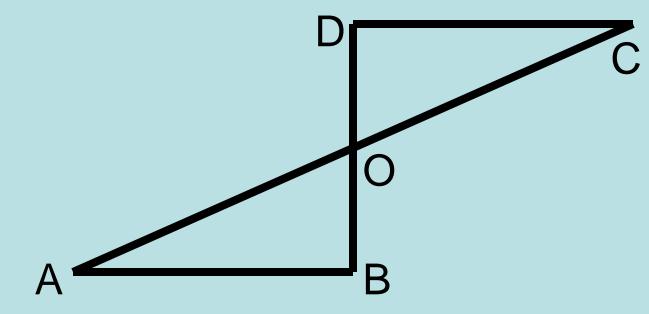
2. Name the three pairs of corresponding angles.

$$\angle F \cong \angle W$$
 $\angle I \cong \angle E$ $\angle N \cong \angle B$

3. Is it correct to say $\triangle NIF \cong \triangle BEW$? Yes

4. Is it correct to say $\Delta INF \cong \Delta EWB$? No

p. 119 # 5 - 9



- **5**. $\triangle ABO \cong \triangle CDO$
- 6. ∠A ≅ ∠C
- 7. $\overline{AO} \cong \overline{CO}$
- 8. $\overline{BO} \cong \overline{DO}$

- 9. Can you deduce that O is the midpoint of any segment?
- Yes. O is the midpoint of \overline{AC} and \overline{DB} because AO = OC and DO = OB.

C C C B

10. Explain how you can deduce that $\overline{DC} // \overline{AB}$. $\angle A \cong \angle C$

p. 119 # 10

If two lines are cut by a transversal and alternate interior angles are congruent, then the lines are parallel.